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We consider a class of 1-D stochastic models that are realizations of Hamiltonian models
of heat conduction and prove that in the infinite volume limit local thermodynamic
equilibrium is attained with linear energy profile.

KEY WORDS: local thermodynamic equilibrium, Hamiltonian systems, scaling
limits, random walks, Martingales, interacting particle systems

For a system in a nonequilibrium steady state, a fundamental issue is whether or
not it is locally in thermodynamic equilibrium (LTE), with a well defined notion
of local temperature. This has remained a challenging mathematical problem for
even relatively simple models.

In this paper, we prove LTE for a class of 1-D models that came about as
stochastic realizations of certain mechanical models of energy transport. These
mechanical models were introduced and studied numerically in Refs. 9, 13. In
Ref. 4, they were simplified slightly, stochastic realizations were proposed, and
the results in the present paper were announced.

We begin with a description of the mechanical models that motivate this
work, giving the slightly simplified version in Ref. 4. The physical domain of this
Hamiltonian system is a linear array of N identical boxes separated by walls with
holes to allow passage between adjacent boxes. See Fig. 1. The two ends of the
chain are connected to infinite heat reservoirs. Inside each box there is a rotating
disk nailed down at its center, around which it turns freely. The kinetic energies
of these N disks serve to mark the energy levels along the chain. Rotating disks
aside, the only other agent in the system is a single point particle (called a tracer)
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Fig. 1. Tracer particle and linear array of rotating disks.

which serves to mediate the redistribution of energy. Except at collisions with the
disks, the tracer moves freely in uniform motion along the chain, making elastic
collisions with the walls of the boxes. When it collides with a disk, the interaction
is that of “sticky reflection”: If the angular velocity of the disk prior to collision
is ω, and vn and vt are the normal and tangential components of the velocity of
the approaching tracer relative to the point of impact, then the values of ω′, v′

n and
v′

t after the collision are given by the following energy and angular momentum
conservation laws:

v′
n = −vn, v′

t = vt − 2ε

1 + ε
(vt − ω), ω′ = ω + 2

1 + ε
(vt − ω).

These rules of interaction are taken verbatim from Refs. 9, 13. They were in fact
used earlier in Ref. 14. When the tracer reaches the ends of the chain, it is replaced
by a new tracer carrying a kinetic energy characteristic of the heat reservoir. More
precisely, suppose the tracer exits the left hole of the leftmost box. Instantaneously,
a new tracer is injected into the system from the same hole, at a random angle,
and carrying a kinetic energy drawn i.i.d. from an exponential distribution with
mean TL , the temperature of the left bath. An analogous set of rules holds when
the tracer exits the hole at the far right. The temperatures TL and TR of the left and
right baths are set unequal, thereby forcing the system out of equilibrium.

In Fig. 1, the individual boxes in the chain are shown as squares. That need
not be the case. Indeed, concave walls induce better scattering of the tracer and
leads generally to better mixing properties of the system.

When the system described above is in equilibrium (i.e., when TL = TR), a
family of Gibbs measures is preserved. For purposes of the present discussion, let
us assume that when TL �= TR , this system has a unique steady state to which all
initial conditions converge. We now fix TL �= TR , and focus on a subsystem of �

consecutive disks at a particular location of the chain, say 1
3 of the length of the

chain from the left. If � � N where N is total system size, then the temperature
gradient across this subsystem should be rather small. It should, therefore be close
to being in equilibrium, i.e. the projection of the invariant measure of the full
system onto this subsystem should be close to one of the Gibbs measures. If this
is true, we say the system is locally in equilibrium, or that it approaches LTE in
the infinite-volume limit. See Ref. 7 for the physics of nonequilibrium systems.
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Of interest also is the temperature profile along the chain. Fourier’s Law predicts
that heat flux is proportional to temperature gradient times conductivity (which
may be temperature dependent). See the review papers(3,11) on Fourier’s Law; for
recent work see e.g. Refs. 1, 2.

Techniques for proving LTE for systems defined by purely deterministic
microscopic laws are, however, not on the horizon. Stochastic models have, in the
past, been introduced to gain insight into the statistical mechanics of Hamiltonian
systems that are otherwise intractable; see e.g. Refs. 8, 10, 12. In the same spirit,
the authors of Ref. 4 proposed stochastic realizations of the models described
above in the hope of capturing the essence of the Hamiltonian dynamics.

In the stochastic realizations proposed in Ref. 4, one considers random vari-
ables (ξ1, ξ2, . . . , ξN ) and η representing the energies of the N disks and the tracer,
and the system is assumed to be Markovian, with the times for energy sharing and
tracer movements signaled by exponential clocks. There are two other simplifying
assumptions. The first is the rule of interaction between tracer and disk: In the
stochastic model we pool together the energies of the tracer and disk, and divide
it randomly into two parts, giving one part to the tracer and the other to the disk.
This is to simulate the fact that in the Hamiltonian model, different conditions
prior to a collision, such as the angle at which the tracer approaches the disk, lead
to different outcomes of energy repartition. If the system is sufficiently mixing,
these angles appear quite random. The second simplifying feature is that the tracer
is assumed of have no memory of its past; it jumps with equal probability to the
left and right when the clock goes off. We require, however, that the clocks ring
at rates proportional to the square root of the (kinetic) energy of the tracer, i.e. its
speed. This is because in the Hamiltonian model, time to collision is halved if the
speed of the tracer with the same trajectory is doubled. It has been demonstrated
in Refs. 4, 5 that this aspect of the dynamics must be respected if the stochastic
models are to retain some of the character of their Hamiltonian counterparts. A
detailed description of the stochastic models considered in this paper is given in
Sec. 1.1.

To prove LTE for these models, we adapted certain ideas of duality for par-
ticle systems invented by Spitzer. In this duality, local equilibrium in the original
process corresponds to asymptotic independence of random walks in certain par-
ticle systems. Once the latter is proved, linearity of mean energy profile is an
immediate corollary. A similar idea is used in Ref. 8 to treat a class of models
now known as the KMP models. KMP models are also stochastic realizations
of Hamiltonian systems, in their case nearest neighbor coupling of Hamiltonian
systems with a single degree of freedom. We learned about this particular dual
process from Ref. 8. Indeed a part of our proof can be seen as an adaptation of
theirs.

Hydrodynamics of stationary nonequilibrium states for a large class of
stochastic lattice gas models were studied in Ref. 6. It is likely that entropy meth-
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ods can be used to give results for a range of models including those considered
in this paper. We have chosen to use the duality method here because it is simpler
and equally effective for this particular model.

1. SETTING AND RESULTS

1.1. Description of Model

We consider in this paper a stochastic process on a (finite) 1-D lattice
{1, 2, . . . , N }, N ∈ Z

+. A rough description of the model is as follows: Sites
1 and N are in contact with heat baths, which we may think of as located at 0 and
N + 1. The temperatures of the left and right baths are TL and TR respectively. At
each of the N sites, there is a stored energy, denoted by ξi . Energy transfer among
the different sites is mediated by a tracer particle which moves from site to site.
Each time the tracer visits a bath, it returns with an energy characteristic of the
bath. The object of our investigation is the steady state distribution of the energy
configuration (ξ1, . . . , ξN ) as N → ∞.

We proceed now to a precise definition of our models, first giving a description
in words before writing down a generator. Given bath temperatures TL , TR > 0
and lattice size N ∈ Z

+, we consider a continuous-time Markov jump process Xt

defined by random variables

Xt := (αt , ηt ; ξ1,t , ξ2,t , . . . , ξN ,t ), t ≥ 0,

where αt ∈ {1, 2, . . . , N } denotes the location of the tracer at time t , ηt ∈ [0,∞)
denotes the (kinetic) energy of the tracer at time t , and ξi,t ∈ [0,∞) the stored
energy at site i at time t . Given (αt , ηt , ξ1,t , . . . , ξN ,t ), the next action takes place
at time t ′ > t where t ′ − t is distributed according to an exponential law with
mean

√
ηt . More precisely, (αs, ηs, ξ1,s, . . . , ξN ,s) = (αt , ηt , ξ1,t , . . . , ξN ,t ) for all

s ∈ [t, t ′), and at time t ′, the following take place:

(1) Mixing of energies: If αt = i , then

ξi,t ′ = p(ξi,t + ηt ) and ηt ′ = (1 − p)(ξi,t + ηt )

where p ∈ [0, 1] is uniformly distributed – except in the cases discussed in
(3) below where ηt ′ is different.

(2) Movement of tracer: If αt = i , i �= 1 or N , then with probability ( 1
2 , 1

2 ),
αt ′ = i ± 1. If αt = 1, then αt ′ = 1, 2 with equal probability. Similarly, if
αt = N , then αt ′ = N , N − 1 with equal probability.

(3) Heat bath random variables: In the cases where αt = αt ′ = 1 or αt = αt ′ = N ,
we think of the tracer as having jumped to the left, resp. right, bath at time t ′

and instantaneously returned, carrying with it a new energy. Accordingly, we
set ηt ′ to be a random value distributed according to an exponential law with
mean TL , resp. TR .
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The mixing random variable p in (1), the direction of tracer movement in (2), and
the bath energy injected into the system in (3) are chosen independently.

The process above is a continuous-time Markov process on S :=
{1, 2, . . . , N } × [0,∞)N+1 defined by the generator L below. Let X =
(α, η, ξ1, ξ2, . . . , ξN ) ∈ S. For p ∈ [0, 1] and ξL , ξR ∈ (0,∞), let X±,p =
(α±, η±, ξ±

1 , ξ±
2 , . . . , ξ±

N ) be given by

ξ±
j =

{
ξ j if j �= α

p(ξα + η) if j = α,

α+ = α + (1 − δα,N ),

α− = α − (1 − δα,1),

η+ = (1 − p)(ξα + η)(1 − δα,N ) + δα,N ξR,

η− = (1 − p)(ξα + η)(1 − δα,1) + δα,1ξL .

Then for any continuous function with compact support f on S,

L f (X) =
∫ ∞

0

∫ ∞

0

∫ 1

0
dξLdξRdp

1

TL

1

TR
e−( ξL

TL
+ ξR

TR
)

×√
η

{
1

2
( f (X+,p) + f (X−,p)) − f (X)

}
.

This completes the definition of the process Xt .
We assume throughout that TL and TR are arbitrary but fixed; N is fixed in

most discussions as well. When there is a need to stress the dependence on N ,
a superscript “(N )” is added to the relevant notation. For example, Xt and its
invariant measure µ are denoted X(N )

t and µ(N ), and so on.

1.2. Statement of Results

Proposition 1.1. Let TL = T = TR. Then

µe :=
(

1

N

N∑
i=1

δα,i

)
×

(
dη

√
β

π

1√
η

e−βη

)
× (

dξ1 · · · dξN 
N
i=1βe−βξi

)
,

β = 1

T
,

is the unique invariant probability measure for Xt .3

3The values of η and ξi are understood to be > 0 throughout.
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This paper is concerned primarily with the case where the system is forced
out of equilibrium, i.e., when TL �= TR .

Proposition 1.2. For each TL , TR > 0 and N ∈ Z
+, Xt has a unique invariant

probability measure µ.

Unlike the equilibrium case, there is no explicit formula for the density of µ.
Our main result addresses the question of local thermodynamic equilibrium

(LTE). For N ∈ Z
+, x ∈ (0, 1) and � ∈ N ∪ {0}, let µ

(N )
x,� denote the projection of

µ(N ) onto the 2� + 1 sites [x N ] − �, . . . , [x N ] + � (assuming that [x N ] − � > 1
and [x N ] + � < N ). We identify µ

(N )
x,� with a measure on R

2�+1 with coordinates

ζ−�, . . . , ζ�, and say X(N )
t approaches LTE as N → ∞ if for every x ∈ (0, 1), there

exists β(x) such that for every � ∈ N ∪ {0}, µ(N )
x,� converges vaguely to the measure

µx,� := dζ−� · · · dζ� 
�
i=−�β(x)e−β(x)ζi . (1)

Theorem 1. As N → ∞, X(N )
t approaches LTE with β(x)−1 = TL + x(TR −

TL ).

We say the profile of mean stored energy as N → ∞ is given by � : (0, 1) →
R if graph(�) = limN→∞ graph(�(N )) where �(N )( i

N+1 ) = Eµ(N ) [ξi ], 1 ≤ i ≤ N .

Corollary 1. The profile of mean stored energy is linear.

2. OUTLINE OF PROOFS

This section contains a sketch of the main ideas in this paper. Complete proofs
are given in Secs. 3, 4, and 5.

2.1. Discrete-Time Process X̂n Associated with Xt

Associated with each Xt is a simpler process in which the exponential holding
time following each jump by the tracer is replaced by the fixed time 1. That is to
say, the action – mix followed by jump – takes place at integer times n = 1, 2, . . ..
We call this process X̂n , and use the same letters as before to denote the random
variables, i.e.,

X̂n := (αn, ηn, ξ1,n, . . . , ξN ,n), n = 0, 1, 2, . . . .

Our plan is to first prove our results for X̂n , then convert them to results for
Xt by reintroducing holding times.
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Lemma 2.1. For each TL , TR > 0, X̂n has a unique invariant probability mea-
sure µ̂. The process is mixing, and for all initial data (α0, η0, ξ1,0, . . . , ξN ,0), the
distribution at time n converges to µ̂ as n → ∞.

To prove LTE for X̂n , we need to be able to recognize the measures µ̂x,�.
The next lemma is used to do that. As before, we identify µ̂

(N )
x,� with a measure on

R
2�+1.

Lemma 2.2. Let x and � and β be fixed. If

Eµ̂(N )

[

�

i=−� ξ
mi
[x N ]+i

] → (

�

i=−�mi !
)
β−(m−�+···+m�) as N → ∞ (2)

for every (2� + 1)-tuple of nonnegative integers (m−�, . . . , m�), then

µ̂N
x,� → µ̂x,� as N → ∞

where

µ̂x,� = dζ−� · · · dζ� 
�
i=−�βe−βζi .

Proving the convergence in (2) with β−1 = (1 − x)TL + xTR is therefore the
key to proving Theorem 1 for the processes X̂n .

2.2. Particle Process Yn Dual to X̂n

For each N , we introduce a process Yn describing the dynamics of m particles
on the lattice {L, 1, 2, . . . , N , R}. (Let us agree to call the objects here “particles”
to distinguish them from the “tracer” in X̂n .) In X̂n , energy is transported along the
chain by a tracer. In Yn , the particles move from site to site riding a “vehicle” which
plays the same role as the tracer and executes a random walk on {1, 2, . . . , N } in
a manner identical to that of the tracer in X̂n . More precisely,

Yn := (γn, Y1,n, Y2,n, . . . , Ym,n), n = 0, 1, 2, . . . .

Here γn ∈ {1, . . . , N } gives the location of the vehicle, and Y j,n ∈ {1, . . . , N } ∪
{L, R} ∪ {∗} gives the location of the j th particle at time n. The symbol Y j,n = ∗
means particle j is “in transit”. Given Yn = (γn, Y1,n, Y2,n, . . . , Ym,n), we first
describe an intermediate state Y′

n = (γ ′
n, Y ′

1,n, Y ′
2,n, . . . , Y ′

m,n) which is the result
of applying step 1 below. Step 2 then takes Y′

n to Yn+1.

1. First we update γn and drop off particles that reach the baths. More precisely:
If γn �= 1 or N , we set γ ′

n = γn ± 1 with equal probability; all other random
variables take the same values as before. If γn = 1, we set γ ′

n = 1 or 2 with
equal probability; additionally, if γ ′

n = 1, we set Y ′
j,n = L for all j such that
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Y j,n = ∗; everything else is unchanged. An analogous procedure is carried out
for γn = N . (In the case γn = γ ′

n = 1, we think of the vehicle as having made
a trip to the left bath and returned instantaneously, unloading all the particles.
That is to say, there is no particle with Y ′

j,n = ∗ in this case.)
2. We update the locations of the particles: Suppose γ ′

n = i . Let � = { j, Y ′
j,n = i

or ∗}, and let r be the cardinality of �. We regard all r particles in � as
indistinguishable, pick p ∈ {0, 1, . . . , r}, each number getting picked with
probability 1

r+1 , and select randomly a p-element subset �′ of �. For j ∈ �′,
set Y j,n+1 = ∗, and for j ∈ � \ �′, set Y j,n+1 = i . All other random variables
are unchanged.

Observe that since γn is never = L or R, it follows that once a particle reaches L
or R, it will remain in these locations forever.

This completes the description of Yn . The exact relation between Yn and X̂n

is explained in Sec. 3. Suffice it to notice here that while X̂n draws in samples of
energies from the heat baths to build a steady state in the interior of the chain, the
flow (of particles) in Yn is in the reverse direction, from the interior of the chain
to the two ends. This “duality” allows us to get our hands on the left side of (2)
via Proposition 2.1 below.

Let x and (m−�, . . . , m�) be as in Lemma 2.2. We start Yn by putting mi

particles at site [x N ] + i, −� ≤ i ≤ �, these being the only particles in the system.
Since every particle eventually comes to rest at either site L or site R, the asymptotic
state of the process can be summarized by a probability ν = νx,{mi },γ0 on N × N

defined as follows: For (kL , kR) ∈ N × N, ν{(kL , kR)} is the probability of having
kL particles eventually resting in L and kR in R. Let νx,{mi } = 1

N

∑N
γ0=1 νx,{mi },γ0 .

Proposition 2.1.∫

�

i=−� ξ
mi
[x N ]+i dµ̂ = (


�
i=−�mi !

) ∫
T kL

L T kR
R dνx,{mi }. (3)

2.3. Asymptotic Independence

From Lemma 2.2 and Proposition 2.1, we see that to prove LTE for X̂n , it
remains to prove

Proposition 2.2. For every x ∈ (0, 1) and {mi ,−� ≤ i ≤ �},∫
T kL

L T kR
R dν

(N )
x,{mi } → T m as N → ∞ (4)

where T = (1 − x)TL + xTR and m = ∑�
i=−� mi .
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The following, if true, would imply Proposition 2.2:

(i) In Yn , each particle individually performs an unbiased random walk.
(ii) The dynamics of distinct particles are independent.

We will show that (i) is in fact true modulo the time a particle spends waiting to
get on the vehicle. (ii) is also valid most of the time; it fails only when there is more
than one element in the set � in Sec. 2.2. Since in the limit in question, the total
number of particles m is held fixed as N goes to infinity, it is an increasingly rare
event for two particles to meet. Asymptotic independence is therefore expected.

3. MOMENTS VIA DUAL PROCESSES

The purpose of this section is to relate the invariant measures of X̂n to those
of Yn and to prove Proposition 2.1. First we dispose of some elementary facts in
Sec. 3.1.

3.1. Invariant Measures

Proof of Proposition 1.1: To prove the invariance of µe, it suffices to show∫
dµe L f = 0 for f which are continuous functions with compact support. For

definiteness, we consider the component of µe corresponding to δα,i for some
i �= 1, N . Notice the following:

(i) The factor
√

η in the generator is cancelled by 1√
η

in the density of µe.

(ii) The measure

δα,i × dηeβη × dξ1 · · · dξN 
N
i=1e−βξi

is preserved by the process of mixing energies. This is because if ζ1 and ζ2

are independent exponential random variables with the same parameter, and
p is a uniform random variable independent of ζ1 or ζ2, then p(ζ1 + ζ2) and
(1 − p)(ζ1 + ζ2) have the same joint distribution as ζ1 and ζ2.

(iii) Tracer movement transforms the measure in (ii) to

1

2
(δα,i−1 + δα,i+1) × dηeβη × dξ1 · · · dξN 
N

i=1e−βξi .

Treating the boundary cases separately (we leave that to the reader) and summing
over i , we conclude that

∫
dµe L f = 0.

Uniqueness follows from Doeblin’s condition. �

Proof of Lemma 2.1: We assume, without loss of generality, that the mean bath
temperatures for X̂n are TL and TR with TL ≤ TR . Let X̂′

n : (α′
n, η

′
n, ξ

′
1,N , . . . , ξ ′

N ,n)

be the process with rules identical to those in X̂n but with bath temperatures equal
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to TR at both ends. It follows from the proof of Proposition 1.1 that

µ̂′ = (
1

N

N∑
i=1

δα′,i ) × (dη′ βRe−βRη′
) × (

dξ ′
1 · · · dξ ′

N 
N
i=1βRe−βRξ ′

i
)
,

βR = 1

TR
,

is an invariant measure for X̂′
n . We couple the processes X̂n and X̂′

n together using
a single Bernoulli random variable to determine the jumps of the tracer in both
processes and a single uniform random variable for the mixing of energies. That is
to say, for all n, we have αn = α′

n and pn = p′
n where pn and p′

n are fractions in the
mixing of energies. We will also couple the baths in such a way that ξR,n = ξ ′

R,n
and ξL ,n < ξ ′

L ,n for all n. It follows that if we start these two processes with the
same initial data, then we have (αn, ηn, ξ1,N , . . . , ξN ,n) ≤ (α′

n, η
′
n, ξ

′
1,N , . . . , ξ ′

N ,n)
for all n, this inequality holding a.s. sample path by sample path, coordinatewise.

An invariant probability measure for X̂n is constructed as follows: Start X̂n

with initial distribution λ0 = µ̂′, and let λn denote the distribution of X̂n at time
n. Since 1

n

∑n−1
k=0 λk ≤ µ̂′ 4 for all n, tightness is guaranteed and a subsequence of

1
n

∑n−1
k=0 λk converges to an invariant probability µ̂ for X̂n .
Mixing and convergence to stationary distribution from arbitrary initial data

follow from standard arguments. �

Proof of Lemma 2.2: Continuing to assume TL ≤ TR , we deduce from the proof
of Lemma 2.1 that for each N , µ̂(N ) is bounded above by a product of exponentials
of rate βR = 1

TR
. The same, therefore, is true for the projected measures µ̂

(N )
x,� .

Since the sequence {µ̂(N )
x,� , N > 2� + 1} is tight, a subsequence converges to some

µ̂x,�. It then follows from (2) that

Eµ̂x,�

[

�

i=−� ξ
mi
[x N ]+i

] = (

�

i=−�mi !
)
β−(m−�+···+m�). (5)

This is true for every (2� + 1)-tuple of nonnegative integers (m−�, . . . , m�).
Since probability measures bounded above by a fixed product of exponentials
are uniquely identified by their moments, (5) forces

µ̂x,� = dζ−� · · · dζ� 
�
i=−�βe−βζi .

Convergence follows from the fact that the argument above is valid for every
accumulation point of {µ̂(N )

x,� , N > 2� + 1}. �

4 ν ≤ µ means as usual that
∫

f dν ≤ ∫
f dµ for all increasing functions f .
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3.2. Duality: Precise Formulation

To be technically correct, the process that is dual to X̂n is not Yn but another
process κ(Yn) that keeps count of the number of particles in the various locations
for Yn , and this duality is valid only with respect to a certain function. We now
make precise these assertions.

The process κ(Yn) is defined by random variables

(γn, qn; k1,n, . . . , kN ,n; kL ,n, kR,n), n = 0, 1, 2, . . . .

We first define its evolution in terms of that of Yn: γn is as in Yn; qn is the number
of particles “in transit”, i.e., the number of j such that Y j,n = ∗; ki,n is the number
of j such that Y j,n = i , and kL ,n (resp. kR,n) the number of j such that Y j,n =
L (resp. R). Having defined κ(Yn) this way, i.e., by ignoring the labels on the
particles in Yn , we observe that it is a bona fide Markov chain. This is because if
we permute the names of the particles at step n, the particle count at step n + 1 is
not affected.

Clearly, starting with any initial condition, qn = ki,n = 0 for all i as n →
∞. Let ν be the probability measure on N × N introduced immediately before
Proposition 2.1 and observe that ν is in fact the asymptotic distribution for κ(Yn).

Let ξ = (η, ξ1, . . . , ξN ) and k = (q, k1, . . . , kN , kL , kR) be shorthand for

these variables. The function with respect to which duality between X̂n and κ(Yn)
is asserted is

F(ξ, k) =
(


N
i=1

ξ
ki
i

ki !

)
ηq

q!
T kL

L T kR
R

where β−1
L = TL and β−1

R = TR . The next proposition is a statement of this duality
for individual tracer paths:

Proposition 3.1. Let ξ ∗ and k∗ be fixed values of ξ and k, and let (i0, i1, . . . , in)
be an admissible tracer path. Then

E[F(ξ
n
, k∗)|ξ

0
= ξ ∗, α0 = i0, . . . , αn = in]

= E[F(ξ∗, kn)|k0 = k∗, γ0 = in, . . . , γn = i0].

Proposition 3.1 is proved in the next subsection. Observe that γ runs in the
reverse direction as α. Averaging over all tracer paths (all of which are weighted
equally), we obtain

E[F(ξ
n
, k∗) | ξ

0
= ξ ∗] = E[F(ξ∗, kn) | k0 = k∗]. (6)

Equation (6) holds for every n. Letting n → ∞, we obtain
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Corollary 2. For every k∗,∫
F(·, k∗) dµ̂ =

∫
T kL

L T kR
R dνk∗

where νk∗ is the probability on N × N describing the asymptotic distribution of
particles starting from the configuration k∗.

Proof: Fix some arbitrary ξ ∗. By Lemma 2.1, the distribution of (αn, ξ n
) con-

verges to µ̂ as n → ∞. Thus the expectation on the left side of (6) converges
to

∫
F(ξ, k∗) dµ̂. Also, the expectation on the right converges to

∫
F(ξ∗, k) dνk∗ ,

which does not depend on ξ ∗ and is equal to
∫

T kL
L T kR

R dνk∗ . �

Proposition 2.1 follows from Corollary 2 by setting all the coordinates in k∗

to 0 except for k[x N ]−�, . . . , k[x N ]+�, which we set equal to m−�, . . . , m�.

3.3. Proof of Duality

We write ξ ∗ = (η∗, ξ ∗
1 , . . . , ξ ∗

N ) and k∗ = (q∗, k∗
1 , . . . , k∗

N , k∗
L , k∗

R).

Lemma 3.1. Given (ξ ∗, k∗) and (i0, i1), we have

E[F(ξ
1
, k∗)|ξ

0
= ξ ∗, α0 = i0, α1 = i1]

= E[F(ξ ∗, k1)|k0 = k∗, γ0 = i1, γ1 = i0]. (7)

Proof:
Case 1. (i0, i1) �= (1, 1) or (N , N ), i.e., no baths are involved. We write the left
side of (7) as I · II where

I =
(


i �=i0

ξ ∗
i

k∗
i

k∗
i !

)
T

k∗
L

L T
k∗

R
R

and

II = E

[
ξ

k∗
i0

i0,1

k∗
i0

!

η
q∗
1

q∗!
| ξ

0
= ξ ∗, α0 = i0, α1 = i1

]
.

Writing k = k∗
i0

, q = q∗, ξ = ξ ∗
i0

and η = η∗ to simplify notation, we obtain

II = 1

k!q!

∫ 1

0
dp [p(ξ + η)]k [(1 − p)(ξ + η)]q

= 1

k!q!
(ξ + η)k+q

∫ 1

0
dp (pk(1 − p)q )
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= 1

k!q!

{
k+q∑
m=0

(k + q)!

m!(k + q − m)!
ξmηk+q−m

}
k!q!

(k + q)!(k + q + 1)

= 1

k + q + 1

k+q∑
m=0

ξm

m!

ηk+q−m

(k + q − m)!
.

With II in this form, we see immediately that the right side of (7) is also equal to
I · II . Notice that by design, mixing takes place at site i0 in both processes.

Case 2. i0 = i1 = 1 or N . We treat the case i0 = i1 = 1. Here again we write the
left side of (7) as I · II where I is as in Case 1 and

II = 1

k!

∫ 1

0
dp [p(ξ + η)]k · 1

q!

∫ ∞

0
dσ σ qβLe−βL σ

= 1

k + 1

k∑
m=0

ξm

m!

ηk−m

(k − m)!
· β

−q
L .

The first part of II is obtained by setting q = 0 in the computation of II in Case 1;
the second part is a standard fact. Notice that setting q1 = 0 and kL ,1 = k∗

L + q is
exactly what is done to compute the right side of (7). �

Proof of Proposition 3.1: Inducting on n, we have, for n ≥ 2,

E[F(ξ
n
, k∗)|ξ

0
= ξ ∗, α0 = i0, . . . , αn = in]

=
∫

E[F(ξ
n
, k∗)|ξ

1
= ξ ′, i1, . . . , in] · P(ξ

1
= ξ ′|ξ

0
= ξ ∗, i0, i1) dξ ′

=
∫

E[F(ξ ′, kn−1)|k0 = k∗, in, . . . , i1] · P(ξ
1

= ξ ′|ξ
0

= ξ ∗, i0, i1) dξ ′

=
∫

F(ξ ′, k ′)·P(kn−1 =k ′|k0 =k∗, in, . . . , i1) · P(ξ
1

= ξ ′|ξ
0
=ξ ∗, i0, i1) dξ ′ dk ′

=
∫

E[F(ξ
1
, k ′)|ξ

0
= ξ ∗, i0, i1] · P(kn−1 = k ′|k0 = k∗, in, . . . , i1) dk ′

=
∫

E[F(ξ ∗, kn)|kn−1 = k ′, i1, i0] · P(kn−1 = k ′|k0 = k∗, in, . . . , i1) dk ′

= E[F(ξ ∗, kn)|k0 = k∗, γ0 = in, . . . , γn = i0].

The induction hypothesis is invoked at the second equal sign on the stretch of
tracer path (i1, . . . , in), and again at the second to last equal sign for (i0, i1). �
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4. ASYMPTOTIC INDEPENDENCE IN PARTICLE SYSTEMS

The purpose of this section is to prove Proposition 2.2, thereby completing
the proof of LTE for X̂n .

4.1. A Slight Simplification

We introduce here a modification of Yn . The resulting process, which we
call Ỹn , is a little simpler to work with. Given Ỹn = (γn, Y1,n, Y2,n, . . . , Ym,n),
we obtain Ỹn+1 by first performing Step 2 in the definition of Yn before Step 1
(see Sec. 2.2). That is to say, if γn = i , then we first select from among those
particles j with Y j,n = i or Y j,n = ∗ which ones will board the vehicle before
the vehicle takes off. With this order of updating, there is no need to distinguish
between Y j,n = i and Y j,n = ∗ when γn = i . Thus we combine the two, setting
Y j,n = i for those j with Y j,n = ∗. Using this convention, Y j,n takes values only
in {1, . . . , N } ∪ {L , R}. In the rest of this section, we will also use L and R
synonymously with 0 and N + 1.

What is needed in Proposition 2.2 is the asymptotic distribution of Yn given
Y0 = (γ0, Y1,0, Y2,0, . . . , Ym,0). After carrying out Step 1 in the definition of Yn ,
we view the resulting Bernoulli measure as initial distribution for the process Ỹn .
The problem is thus reduced to the asymptotic distributions of Ỹn . (Notice that
in the starting configurations of interest, there is, in fact, no j with Y j,0 = ∗; see
Sec. 3.2. Thus the two states in this Bernoulli measure differ from Y0 only in γ0.)

From here on we will work exclusively with Ỹn .

4.2. Preliminary Observations

We introduce the notation Y j,∞ = L or R if limn→∞ Y j,n = L or R.

Lemma 4.1. Suppose there is a single particle in the system. Then modulo
waiting time (i.e., the times when the particle does not move), the motion of the
particle is that of a symmetric random walk. Consequently, if Y1,0 = i , then

P(Y1,∞ = L) = N − i + 1

N + 1
, P(Y1,∞ = R) = i

N + 1
.

This is quite obvious.

Lemma 4.2. The dynamics of a system (with a fixed number of particles) are
unaffected by the addition of new particles.
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Proof: Consider a system with m particles. For definiteness, assume γn = i , and
Y j,n = i for 1 ≤ j ≤ k, Y j,n �= i for k < j ≤ m. Let J ( j1, . . . , j�) denote the
probability that particles j1, . . . , j� jump at this time and the remaining m − �

particles do not. Then

J ( j1, . . . , j�) = 1

k + 1
· 1

Ck
�

= �!(k − �)!

(k + 1)!
.

where Ck
� is the number of ways of choosing � particles from k particles. Now add

a new particle to the system. Assume Ym+1,n = i , and the situation with respect to
the original m particles is as before. Then

J ( j1, . . . , j�)+ J ( j1, . . . , j�, m + 1) = 1

k + 2

1

Ck+1
�

+ 1

k + 2

1

Ck+1
�+1

= �!(k − �)!

(k + 1)!
,

proving that at this step, the movements of the m particles in the original system
are oblivious to the presence of the (m + 1)st particle. �

Corollary 3. Modulo waiting times, every particle individually performs a sym-
metric random walk until it reaches L or R.

This follows immediately from Lemmas 4.1 and 4.2. What we need to estab-
lish is the independence of these walks.

Setting and notation for the rest of this section:

Results for the following two kinds of initial configurations are needed:

(1) As in Sec. 2.2, we let x ∈ (0, 1) and m−�, . . . , m� be fixed. For each N , we
start with mi particles at site [x N ] + i, −� ≤ i ≤ �, and no other particles in
the system.

(2) In addition to the mi particles at sites [x N ] + i, −� ≤ i ≤ �, we put m̄
particles at site [yN ] for y �= x . These are the only particles in the system.

In each of the two cases, we run Ỹn , and obtain for each γ0 an asymptotic
distribution. We estimate the distance between this distributions and the product
measure corresponding independent walks, taking supremum as γ0 ranges over all
initial positions. Finally, we show that these maximum errors go to 0 as N → ∞.

With obvious modifications, our arguments are valid when x in Case (1) above
is replaced by a finite number of points x1, . . . , xr ∈ (0, 1), each with its own set
of particles in a block centered at [xi N ]. The arguments are essentially unchanged.
For definiteness and to avoid cumbersome notation, we treat only Case (1).

Let m = ∑�
i=−� mi . For an m-block (A1, . . . , Am) where each A j = L or R,

let

P(A1, . . . , Am) = P(Y1,∞ = A1, . . . , Ym,∞ = Am).
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When it is necessary to emphasize the number of entries in the block, we will
write Pm(· · ·). In view of Corollary 3, asymptotic independence means for all
(A1, . . . , Am),

P(A1, . . . , Am) → Q A1 (x) · · · Q Am (x) as N → ∞ uniformly in γ0

where QL (x) = 1 − x , Q R(x) = x .

Lemma 4.3. It suffices to prove that for all m ≥ 2,

Pm(R, R, . . . , R) → xm as N → ∞.

Proof: We show how to deduce Pm(A1, . . . , Am) for all (A1, . . . , Am) from the
number Pm(R, R, . . . , R) together with knowledge of Pk(A1, . . . , Ak) for all
(A1, . . . , Ak), k < m. Since Pm(L or R, R, . . . , R) = Pm−1(R, . . . , R) (Lemma
4.2), it follows from

Pm(L , R, . . . , R) = Pm(L or R, R, . . . , R) − Pm(R, R, . . . , R)

that Pm(L , R, . . . , R) is determined. Likewise,

Pm(L , L , R, . . . , R) = Pm(L , L or R, R, . . . , R) − Pm(L , R, R, . . . , R),

and so on. �

4.3. Lower Bound of P(R, R, . . . , R)

Proposition 4.1. lim inf N→∞ P(R, R, . . . , R) ≥ xm.

This is the easier of the two inequalities because compared to independent
random walks, the particles in our system have a tendency to stick together when
they meet. To illustrate this point, consider the case of 2 particles, with Y1,n =
Y2,n = γn = i . Then P(Y1,n+1 = Y2,n+1) = 2

3 , compared to 1
2 in two independent

walks.
Let Fn be the σ -algebra generated by the random variables {Y j,r , γr , 1 ≤ j ≤

m, 0 ≤ r ≤ n}. Let

f (Y1, . . . , Ym) := Y1 · · · Ym,

and define

� f (Y1,n, . . . , Ym,n ; γn)

:= E[ f (Y1,n+1, . . . , Ym,n+1)|Yi,n, . . . , Ym,n; γn] − f (Y1,n, . . . , Ym,n).

Since this definition is independent of n, the notation � f (Y, . . . , Ym ; γ ) makes
sense.
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Lemma 4.4. The process f (Y1,n, . . . , Ym,n), n = 0, 1, . . ., is a submartingale
with respect to the filtration {Fn}.

Proof: If suffices to show

� f (Y1, . . . , Ym ; i) ≥ 0 for all(Y1, . . . , Ym ; i).

Fix Y1, . . . , Ym and i . Clearly, if Y j = 0 for some j , then � f = 0, so we may
assume Y j �= 0 for all j . Since � f depends only on changes in location of those
particles with Y j = i , it suffices to show � f̂ ≥ 0 where � f̂ is defined by

� f = (

Y j �=i Y j

) · � f̂ .

Let k be the number of j with Y j = i , and let J be the number of particles that
jump. Clearly, E[� f̂ |J = 0] = 0. For p = 1, . . . , k,

E[� f̂ |J = p] = i k−p ·
{

1

2
((i − 1)p + (i + 1)p) − i p

}
. (8)

This is = 0 if p = 1, > 0 by Jensen’s inequality if p > 1. �

The notation O(Nr ) is used to denote a term that is less than C Nr with C
independent of N . We record for future use the following observation:

Lemma 4.5. Given (Y1, . . . , Ym ; i), let k be the number of j with Y j = i . Then
� f (Y1, . . . , Ym ; i) = 0 unless both (i) Y j �= 0 for all j , and (ii) k ≥ 2 hold. When
both (i) and (ii) hold, we have

� f (Y1, . . . , Ym ; i) = c(k) · (
1≤ j≤mY j )i
−2 + O(N m−3) (9)

where c(k) is a constant depending only on k.

Proof: That � f = 0 unless both (i) and (ii) hold is proved in Lemma 4.4. If (i)
and (ii) both hold, then it follows from (8) that

� f (Y1, . . . , Ym ; i) = 1

k + 1

k∑
p=0

E[� f |J = p]

= 1

k + 1

k∑
p=2

Ck
p · (


Y j �=i Y j

) · i k−p · C p
2 i p−2 + O(N m−3),

which has the form of the expression on the right side of (9). �

Proof of Proposition 4.1: Since f (Y1,n, . . . , Ym,n) is a submartingale, it converges
almost surely to f (Y1,∞, . . . , Ym,∞), which is = 0 except when Y j,∞ = R for all
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j , where it is = (N + 1)m . Now

f (Y1,0, . . . , Ym,0) ≈ [x N ]m,

and inductively, we have, for all n ≥ 0,

E[ f (Y1,n, . . . , Ym,n)] − f (Y1,0, . . . , Ym,0) =
n−1∑
r=0

E[� f (Y1,r , . . . , Ym,r ; γr )].

(10)
By Lemma 4.4, the random variables � f (Y1,r , . . . , Ym,r ; γr ) are ≥ 0 everywhere.
Hence E[ f (Y1,n, . . . , Ym,n)] ≥ f (Y1,0, . . . , Ym,0). It follows that

P(R, R, . . . , R) = 1

(N + 1)m
E[ f (Y1,∞, . . . , Ym,∞)] ≥ 1

(N + 1)m
[x N ]m,

which tends to xm as N → ∞. �

4.4. Upper Bound of P(R, R, . . . , R)

Proposition 4.2. lim supN→∞ P(R, R, . . . , R) ≤ xm.

To prove this inequality, we consider f = f1 − a f2 where f1(Y1, . . . , Ym) =

 j Y j ,

f2 =
∑

1≤ j1< j2≤m

g j1 j2 , g j1 j2 (Y1, . . . , Ym) = |Y j1 − Y j2 | · (

 j �= j1, j2 Y j

)
,

and a > 0 is a constant to be determined. We consider separately � f1(Y1,

. . . , Ym ; i) and � f2(Y1, . . . , Ym ; i), in each case distinguishing between terms
that are of order N m−2 and O(N m−3). Observe that no terms of order N m−1 or
higher are present: we have shown this for � f1; for � f2, this is obvious since
f2 = O(N m−1).

Lemma 4.6. To show lim supN→∞ P(R,R, . . . , R) ≤ x1 · · · xm, it suffices to
show that the N m−2-terms in � f (Y1, . . . , Ym ; i) are ≤ 0 for all (Y1, . . . , Ym ; i).
That is to say, the O(N m−3)-terms play no role.

Proof: Given (Y1,0, . . . , Ym,0; γ0), we introduce a sequence of stopping times as
follows: S is the smallest n such that Y j,n = L or R for all j , and S0 = 0. Let
0 < ε < 1 be fixed. After Sq is defined, we let

Sq+1 := min{S, inf{n > Sq : Y j,n �= Y j,n−1 for some j}}.
Let S∗ = Sm N 2+ε . Then if S > S∗, at least one of the particles jumps > N 2+ε

times without reaching L or R. Recall that ignoring waiting time, the motion of
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each particle individually is that of an unbiased random walk (Corollary 3). The
probability of such a particle not reaching L or R in ≥ N 2+ε steps is < cN− ε

2 for
large N . Thus P(S > S∗) < cm N− ε

2 := εN , and

E[ f1(Y1,S∗ , . . . , Ym,S∗ )] ≥ E[ f1(Y1,S∗ , . . . , Ym,S∗ )|S∗ = S] · P(S = S∗)

≥ E[ f1(Y1,∞, . . . , Ym,∞)|S∗ = S] · P(S = S∗)

≥ E[ f1(Y1,∞, . . . , Ym,∞)] − (N + 1)m P(S > S∗)

≥ (P(R, . . . , R) − εN ) · (N + 1)m .

Since E[ f2(Y1,S∗ , . . . , Ym,S∗ )] = O(N m−1), it follows from the inequalities above
that

(P(R, . . . , R) − εN )(N + 1)m ≤ E[ f (Y1,S∗ , . . . , Ym,S∗ )] + O(N m−1).

We estimate E[ f (Y1,S∗ , . . . , Ym,S∗ )] as follows. Let �q,n denote the set of
sample paths ωn = {(Yi,r , . . . , Ym,r ; γr ), r ≤ n} such that Sq (ωn) = n and S(ωn) ≥
n. Then

E[ f (Y1,S∗ , . . . , Ym,S∗ )] − [x N ]m

≈
m N 2+ε∑

q=1

{ ∞∑
n=1

∑
ωn∈�q,n

( f (Y1,n . . . , Ym,n) − f (Y1,n−1, . . . , Ym,n−1))P(ωn)

}
.

(11)

Now fix ω̂n−1 = {(Ŷi,r , . . . , Ŷm,r ; γ̂r ), r ≤ n − 1}, and let �q,n(ω̂n−1) be the subset
of �q,n consisting of paths which up to time n − 1 coincide with ω̂n−1. Then the
part of the sum over ωn ∈ �q,n corresponding to ωn ∈ �q,n(ω̂n−1) is
[ ∑

ωn∈�q,n (ω̂n−1)

( f (Y1,n, . . . , Ym,n)− f (Ŷ1,n−1, . . . , Ŷm,n−1)) · P(ωn)∑
P(ωn)

]
·
∑

P(ωn).

The quantity between the square brackets

= k + 1

k
· � f (Ŷ1,n−1, . . . , Ŷm,n−1; γ̂n−1) (12)

where k is the number of j for which Ŷ j,n−1 = γ̂n−1. The k+1
k correction reflects

the fact that with probability 1
k+1 , no particle jumps.

We have shown that the quantities inside curly brackets in (11) are weighted
averages of terms of the form in (12). Write

E[ f (Y1,S∗ , . . . , Ym,S∗ )] = [x N ]m + �(2) + �(3)



660 Ravishankar and Young

where �(2) and �(3) are the N m−2 and O(N m−3)-contributions respectively. Since
there are at most m N 2+ε terms of the type inside curly brackets, it follows that

�(3) = O(N m−3+2+ε) = O(N m−1+ε) .

Altogether, these inequalities imply

P(R, . . . , R) − εN ≤ 1

N m
[x N ]m + 1

N m
�(2) + O(N ε−1) ,

proving the desired inequality as N → ∞ if �(2) ≤ 0. �

The rest of the proof is concerned with the sign of � f (Y1, . . . , Ym ; i).

Lemma 4.7. Let (Y1, . . . , Ym ; i) be such that Y j = i for all j ≤ k and Y j �= i for
j > k. Let j1 < j2 be arbitrary, and let g = g j1 j2 . For 1 ≤ p ≤ k, let

� = E[�g(Y1, . . . , Ym ; i) | particles 1, . . . , p jump; the rest do not].

Then � = O(N m−3) except when Y j1 = Y j2 = i and j1 ≤ p < j2, in which case

� = (

m

j=1Y j

)
i−2 + O(N m−3) .

Proof: To simplify notation, we write Z = 
 j>p, j �= j1, j2 Y j and consider the fol-
lowing 3 scenarios:

Scenario 1. Particles j1 and j2 both jump. Here g = 0 because |Y j1 − Y j2 | = 0.
Since all particles that jump end up in the same location, after the jump we again
have |(Y j1 ± 1) − (Y j2 ± 1)| = 0. Thus � = 0.

Scenario 2. Neither j1 nor j2 jumps. If Y j1 = Y j2 , then � = 0. If Y j1 �= Y j2 ,
then g = |Y j1 − Y j2 | · Z · i p. After the jump, the expected value is |Y j1 − Y j2 | ·
Z · 1

2 ((i + 1)p + (i − 1)p). An argument similar to that in the previous subsection
gives � = O(N m−3).

Scenario 3. j1 jumps but not j2. In this case, Z = O(N m−p−1). We treat separately
the following two subcases.

Case 1. |Y j1 − Y j2 | ≥ 1. If p = 1, then � = 0 (easy). Suppose p > 1.

Configuration 1: Choosing + causes |Y j1 − Y j2 | to increase by 1. Here g =
|Y j1 − Y j2 | · Z · i p−1. After the jump, the expected value is

1

2
{(|Y j1 − Y j2 | + 1) · Z · (i + 1)p−1 + (|Y j1 − Y j2 | − 1) · Z · (i − 1)p−1}
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This gives � = I + II where

I = |Y j1 − Y j2 | · Z ·
{

1

2
((i + 1)p−1 + (i − 1)p−1) − i p−1

}

and

II = Z · 1

2
{(i + 1)p−1 − (i − 1)p−1}.

Both I and II are O(N m−3).

Configuration 2: Choosing + causes |Y j1 − Y j2 | to decrease by 1. A similar
computation gives � = I − II where I and II are as in Configuration 1.

Case 2. |Y j1 − Y j2 | = 0. Here g = 0. After the jump, |Y j1 − Y j2 | = 1 and the ex-
pected value is Z · 1

2 ((i + 1)p−1 + (i − 1)p−1), which is = Z · i p−1 + O(N m−3).
Now the present case (Scenario 3, Case 2) corresponds to Y j1 = Y j2 = i and
j1 ≤ p < j2. In this case,

Z · i p−1 + O(N m−3) = (

m

j=1Y j

)
i−2 + O(N m−3).

�

Corollary 4. Let (Y1, . . . , Ym ; i) be such that the number of j with Y j = i is
equal to k. Then there exists j1 < j2 such that

�g j1, j2 (Y1, . . . , Ym ; i) ≥ c′(k) · (

m

j=1Y j

)
i−2 + O(N m−3)

where c′(k) ≥ 1
k(1+k) .

Proof: By relabeling the names of the particles, we may assume Y j = i for
j ≤ k. Choose j2 = k, j1 < j2, and let p = k − 1. Then the probability of having
exactly the first p particles jump is 1

k(k+1) , and the lower bound follows from
Lemma 4.7. �

Let us use “A ≥ B mod O(Nr )” as shorthand for the obvious.

Proof of Proposition 4.2: We will show that for a sufficiently large,

a� f2(Y1, . . . , Ym ; i) ≥ � f1(Y1, . . . , Ym ; i) modO(N m−3) (13)

for every (Y1, . . . , Ym ; i). Proposition 4.2 then follows from Lemma 4.6.
To prove (13), observe first that � f2 ≥ 0 mod O(N m−3) because it is a sum of

terms of the type in Lemma 4.7. Thus it suffices to consider those (Y1, . . . , Ym ; i)
satisfying conditions (i) and (ii) in Lemma 4.5. For each such (Y1, . . . , Ym ; i),
we need the N m−2-term of a� f2(Y1, . . . , Ym ; i) to compensate the corresponding
(strictly positive) term in � f1, namely c(k)(
 j=1m Y j )i−2. Corollary 4 guarantees
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a term of of exactly the same form. Notice that 
m
j=1Y j > 0 by condition (i). It

suffices, therefore, to take a = max2≤k≤m
c(k)
c′(k) . �

This completes the proof of asymptotic independence for Ỹn , a fact which
combined with Proposition 2.1 and Lemma 2.2 gives LTE for X̂n . To deduce the
linearity of its energy profile, the full force of asymptotic independence is not
needed; Lemma 4.1 alone suffices.

5. DEDUCING RESULTS FOR Xt FROM THOSE FOR X̂n

Proof of Proposition 1.2: Let µ̂ be the unique invariant measure for X̂n given by
Lemma 2.1, and assume, for the moment, that Z := ∫

1√
η

dµ̂ < ∞. Since for Xt ,
the expected holding time at (α, η, ξ1, . . . , ξN ) is 1√

η
, we conclude from standard

arguments that µ := 1
Z

1√
η
µ̂ is the unique invariant measure for Xt . In more detail,

let G be a continuous, compactly supported function on (α, η, ξ1, . . . , ξN )-space,
and consider a typical sample path X̂n = (αn, ηn, ξ1,n, . . . , ξN ,n) of X̂n , with typical
holding times τn (which are independent with exponential law, mean 1√

ηn
). The

ergodic theorem applied to (X̂n, µ̂) guarantees that as k → ∞,

1

k

k−1∑
n=0

τn →
∫

1√
η

dµ̂ and
1

k

k−1∑
n=0

τnG(X̂n) →
∫

1√
η

Gdµ̂ .

Let Xt be the sample path of Xt corresponding to X̂n and τn , and let T (k) =∑k−1
n=0 τn . Then

lim
k→∞

1

T (k)

∫ T (k)

0
G(Xt )dt = lim

k→∞
k

T
· 1

k

k−1∑
n=0

τnG(X̂n) = 1

Z
·
∫

1√
η

Gdµ̂.

To show Z < ∞, we use again the coupling argument in the proof of
Lemma 1.2, this time setting both bath temperatures equal to TL for X̂′

n (assuming
TL < TR as before). Then µ̂′ ≤ µ̂, and since

∫
1√
η′ dµ̂′ < ∞ (an easy exercise), it

follows that Z < ∞. �

Let x ∈ (0, 1) and m−�, . . . , m� ∈ Z
+ ∪ {0} be fixed, and let G(N ) =

�



i=−�

ξ
mi
[x N ]+i .

Lemma 5.1.

lim
N→∞

∫
1√
η

G(N )dµ̂(N ) = lim
N→∞

(∫
1√
η

dµ̂(N )
∫

G(N )dµ̂(N )

)
.
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Proof of Theorem 1 and Corollary 1 Assuming Lemma 5.1: First, we have

lim
N→∞

∫
G(N )dµ(N ) = lim

N→∞
1

Z (N )

∫
G(N ) 1√

η
dµ̂(N )

= lim
N→∞

1

Z (N )

∫
1√
η

dµ̂(N )
∫

G(N )dµ̂(N )

= lim
N→∞

∫
G(N )dµ̂(N ).

The first equality expresses how µ is related to µ̂ (Proposition 1.2), the second is
by Lemma 5.1, and the third is the definition of Z . By Propositions 2.1 and 2.2,

lim
N→∞

∫
G(N )dµ̂(N ) = (


�
i=�mi !

)
T m−�+···+m�

where T = (1 − x)TL + xTR . Since this holds for all x and all m−�, . . . , m�, LTE
and linearity of profile for Xt is proved. �

Proof of Lemma 5.1: First, in the notation of Sec. 3, for fixed N and i ,

Eµ̂(N ) [F(·, k∗)|α = i] =
∫

T kL
L T kR

R dνk∗,i .

This is because requiring α = i in the last step when running X̂n corresponds to
running Yn with γ0 = i .

Next we fix x, � and y, and let µ̂(N )
x,�|y denote the projection of µ̂(N )|{α = [yN ]}

onto (η, ξ[x N ]−�, . . . , ξ[x N ]+�)-space. Our results in Secs. 3 and 4 applied to initial
conditions with two groups of particles (Case (2) under “Setting” in Sec. 4.2) give,
for x �= y,

µ̂x,�|y := lim
N→∞

µ̂
(N )
x,�|y = dηβ(y)e−β(y)η × 
�

i=−� dξ[x N ]+i β(x)e−β(x)ξ[x N ]+i

with β(y)−1 = (1 − y)TL + yTR and β(x)−1 = (1 − x)TL + xTR .
Finally, let G(N ) be as in Lemma 5.1. Our line of argument (with justification

to follow) is

lim
N→∞

Eµ̂(N )

[
1√
η

G(N )

]
= lim

N→∞

∫ 1

0
E

µ̂
(N )
x,�|y

[
1√
η

G(N )

]
dy

=
∫ 1

0

(
lim

N→∞
E

µ̂
(N )
x,�|y

[
1√
η

G(N )

])
dy

=
∫ 1

0
Eµ̂x,�|y

[
1√
η

G(N )

]
dy
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=
∫ 1

0
Eµ̂x,�|y

[
1√
η

]
· Eµ̂x,�|y

[
G(N )

]
dy

= lim
N→∞

Eµ̂(N )

[
1√
η

]
· Eµ̂(N )

[
G(N )

]
.

Exchanging the order of the limit and integral in the second equality is justified
because we have dominated convergence: By Hölder’s inequality,

∫
1√
η

G(N )dµ
(N )
x,�|y ≤

{∫
1

η
3
4

dµ
(N )
x,�|y

} 2
3

·
{∫ (

G(N )
)3

dµ
(N )
x,�|y

} 1
3

.

The first factor on the right is bounded above by comparing it to the corresponding
integral for a process with both bath temperatures equal to TL (assuming TL < TR).
The second factor is estimated similarly by comparing to a process with bath
temperatures equal to TR . The next two equalities are based on the existence of the
limit µ̂x,�|y and its product structure from Sec. 4, and the last equality is obtained
by reversing the argument for the two expectations separately. �
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